Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 14(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38612280

RESUMO

Pre-implantation embryos release extracellular vesicles containing different molecules, including DNA. The presence of embryonic DNA in E-EVs released into the culture medium during in vitro embryo production could be useful for genetic diagnosis. However, the vesicles containing DNA might be derived from embryos suffering from apoptosis, i.e., embryos of bad quality. This work intended to confirm that embryos release DNA that is useful for genotyping by evaluating the effect of embryonic apoptosis on DNA content in E-EVs. Bovine embryos were produced by parthenogenesis and in vitro fertilization (IVF). On Day 5, morulae were transferred to individual cultures in an EV-depleted SOF medium. On Day 7, embryos were used to evaluate cellular apoptosis, and each culture medium was collected to evaluate E-EV concentration, characterization, and DNA quantification. While no effect of the origin of the embryo on the apoptotic rate was found, arrested morulae had a higher apoptotic rate. E-EVs containing DNA were identified in all samples, and the concentration of those vesicles was not affected by the origin or quality of the embryos. However, the concentration of DNA was higher in EVs released by the arrested parthenogenetic embryos. There was a correlation between the concentration of E-EVs, the concentration of DNA-positive E-EVs, and the concentration of DNA. There was no negative effect of apoptotic rate on DNA-positive E-EVs and DNA concentration; however, embryos of the best quality with a low apoptotic rate still released EVs containing DNA. This study confirms that the presence of DNA in E-EVs is independent of embryo quality. Therefore, E-EVs could be used in liquid biopsy for noninvasive genetic diagnosis.

2.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673927

RESUMO

Domestic cat blastocysts cultured without the zona pellucida exhibit reduced implantation capacity. However, the protein expression profile has not been evaluated in these embryos. The objective of this study was to evaluate the protein expression profile of domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were generated: (1) domestic cat embryos generated by IVF and cultured in vitro (zona intact, (ZI)) and (2) domestic cat embryos cultured in vitro without the zona pellucida (zona-free (ZF group)). The cleavage, morula, and blastocyst rates were estimated at days 2, 5 and 7, respectively. Day 7 blastocysts and their culture media were subjected to liquid chromatography-tandem mass spectrometry (LC-MS/MS). The UniProt Felis catus database was used to identify the standard proteome. No significant differences were found in the cleavage, morula, or blastocyst rates between the ZI and ZF groups (p > 0.05). Proteomic analysis revealed 22 upregulated and 20 downregulated proteins in the ZF blastocysts. Furthermore, 14 proteins involved in embryo development and implantation were present exclusively in the culture medium of the ZI blastocysts. In conclusion, embryo culture without the zona pellucida did not affect in vitro development, but altered the protein expression profile and release of domestic cat blastocysts.


Assuntos
Blastocisto , Proteômica , Zona Pelúcida , Animais , Blastocisto/metabolismo , Zona Pelúcida/metabolismo , Gatos , Proteômica/métodos , Técnicas de Cultura Embrionária , Secretoma/metabolismo , Feminino , Fertilização in vitro , Proteoma/metabolismo , Desenvolvimento Embrionário , Espectrometria de Massas em Tandem , Cromatografia Líquida
3.
Front Vet Sci ; 10: 1271240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869492

RESUMO

The modulation of inflammation is pivotal for uterine homeostasis. Here we evaluated the effect of the oestrus cycle on the expression of pro-inflammatory and anti-inflammatory markers in a cellular model of induced fibrosis. Mare endometrial stromal cells isolated from follicular or mid-luteal phase were primed with 10 ng/mL of TGFß alone or in combination with either IL1ß, IL6, or TNFα (10 ng/mL each) or all together for 24 h. Control cells were not primed. Messenger and miRNA expression were analyzed using real-time quantitative PCR (RT-qPCR). Cells in the follicular phase primed with pro-inflammatory cytokines showed higher expression of collagen-related genes (CTGF, COL1A1, COL3A1, and TIMP1) and mesenchymal marker (SLUG, VIM, CDH2, and CDH11) genes; p < 0.05. Cells primed during the mid-luteal overexpressed genes associated with extracellular matrix, processing, and prostaglandin E synthase (MMP2, MMP9, PGR, TIMP2, and PTGES; p < 0.05). There was a notable upregulation of pro-fibrotic miRNAs (miR17, miR21, and miR433) in the follicular phase when the cells were exposed to TGFß + IL1ß, TGFß + IL6 or TGFß + IL1ß + IL6 + TNFα. Conversely, in cells from the mid-luteal phase, the treatments either did not or diminished the expression of the same miRNAs. On the contrary, the anti-fibrotic miRNAs (miR26a, miR29b, miR29c, miR145, miR378, and mir488) were not upregulated with treatments in the follicular phase. Rather, they were overexpressed in cells from the mid-luteal phase, with the highest regulation observed in TGFß + IL1ß + IL6 + TNFα treatment groups. These miRNAs were also analyzed in the extracellular vesicles secreted by the cells. A similar trend as seen with cellular miRNAs was noted, where anti-fibrotic miRNAs were downregulated in the follicular phase, while notably elevated pro-fibrotic miRNAs were observed in extracellular vesicles originating from the follicular phase. Pro-inflammatory cytokines may amplify the TGFß signal in the follicular phase resulting in significant upregulation of extracellular matrix-related genes, an imbalance in the metalloproteinases, downregulation of estrogen receptors, and upregulation of pro-fibrotic factors. Conversely, in the luteal phase, there is a protective role mediated primarily through an increase in anti-fibrotic miRNAs, a decrease in SMAD2 phosphorylation, and reduced expression of fibrosis-related genes.

4.
Zygote ; 31(6): 544-556, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37724015

RESUMO

The in vitro culture of domestic cat embryos without the zona pellucida affects their implantation capacity. MicroRNAs (miRNAs) have an important role in embryo-maternal communication and implantation. The objective of this study was to evaluate the expression of specific miRNAs in domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were done: (1) domestic cat embryos cultured with the zona pellucida (zona intact control group, ZI); and (2) cultured without the zona pellucida (zona free group, ZF). The cleavage, morula and blastocyst rates were evaluated. The blastocysts and their spent medium were used for miRNA expression analysis using RT-qPCR (miR-21, miR-24, mi25, miR-29, miR-96, miR-98, miR-103, miR-191, miR-196, miR-199, miR-130, miR-155 and miR-302). The pre-mature microRNAs (pre-miRNAs) and miRNAs were evaluated in the blastocysts and only miRNAs were evaluated in the spent medium. No differences were observed in the cleavage, morula and blastocyst rates between the ZF and ZI groups (P > 0.05). For miRNAs analysis, miR-103 and miR-191 had the most stable expression and were selected as internal controls. ZF blastocysts had a higher expression of miR-21, miR-25, miR-29 and miR-199 and a lower expression of miR-96 than their ZI counterparts (P < 0.05). Furthermore, higher levels of miR-21, miR-25 and miR-98 were detected in the spent medium of ZF blastocysts (P < 0.05). In conclusion, in vitro culture of domestic cat embryos without the zona pellucida modifies the expression of miR-21, miR-25, miR-29, miR-199 and miR-96 at the blastocyst stage and the release of miR-21, miR-25 and miR-98.


Assuntos
MicroRNAs , Zona Pelúcida , Gatos , Animais , MicroRNAs/genética , Blastocisto , Implantação do Embrião , Embrião de Mamíferos
5.
PLoS One ; 18(8): e0289751, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37561791

RESUMO

The objective of this study was to evaluate the time of blastulation monitored by time-lapse technology to predict in vitro viability of bovine blastocysts. This technology can be a powerful tool for bovine embryos selection with higher implantation capacity and competence. Also, in humans an early blastulation is associated with higher quality and pregnancy rate. Cumulus oocyte complexes (COCs) were matured for 20 to 22 h and then fertilized by co-incubation of COCs and spermatozoa (10,000 sperm per oocyte) for 18 h. Presumptive zygotes were placed individually in microwells, in droplets of commercial culture medium. The Primo Vision TL system (EVO+; Vitrolife) captured digital images of developing embryos every 15 minutes. The time frame from IVF to the start of blastulation (tSB) and to blastocyst development (tB) was recorded. After day 7.5, the blastocysts were in vitro culture for 48 h until day 9.5 after IVF to evaluate post hatching development. In vitro viability was evaluated at day 9.5: those with a diameter greater than 200 µm and a total cell count greater than 180 were classified as viable (value 1), while the rest were classified as non in vitro viable (value 0). The area under the ROC curve (AUC) was estimated to determine the predictive power of in vitro viability through blastulation time. In addition, binary logistic regression analysis was used to generate a mathematical model with morphokinetic variables that allow the best prediction of in vitro viability. In 13 sessions, the blastocyst production rate was 46.2% (96/208). The cut-off time to discriminate early or late blastulation was 149.8 h. The post-hatching development of the embryos with early blastulation was 63.3% (31/49), being statistically superior (p = 0.001) than the late blastulation group 14.9% (7/47). Likewise, the time of blastulation showed an accuracy of 90.8% (p < 0.001) in predicting in vitro viability of bovine blastocysts. In conclusion, the selection of blastocysts based on blastulation time (< 155 h) and blastocyst diameter measured on day 7.5 after IVF (> 180 µm) maximizes the in vitro viability.


Assuntos
Técnicas de Cultura Embrionária , Sêmen , Gravidez , Humanos , Feminino , Masculino , Animais , Bovinos , Imagem com Lapso de Tempo , Blastocisto , Desenvolvimento Embrionário , Fertilização in vitro/veterinária
6.
Microvasc Res ; 148: 104498, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36863509

RESUMO

Endothelial progenitor cells (EPCs) are stem cells mainly derived from bone marrow; from where they migrate to repair and regenerate damaged tissues. eEPCs have been classified into two sub-populations, early (eEPC) and late EPCs (lEPC), depending on maturation stages in vitro. In addition, eEPC release endocrine mediators, including small extracellular vesicles (sEVs), which in turn may enhance the eEPC-mediated wound healing properties. Nevertheless, adenosine contributes to angiogenesis by recruiting eEPC at the injury site. However, whether ARs may enhance the secretome of eEPC, including sEVs, is unknown. Therefore, we aimed to investigate whether AR activation increase the release of sEVs in eEPC, which in turn has paracrine effects on recipient endothelial cells. Results shown that 5'-N-ethylcarboxamidoadenosine (NECA), a non-selective agonist, increase both the protein levels of the vascular endothelial growth factor (VEGF), and the number of sEVs released to the conditioned medium (CM) in primary culture of eEPC. Importantly, CM and EVs harvested from NECA-stimulated eEPC promote in vitro angiogenesis, without changes in cell proliferation, in recipient ECV-304 endothelial cells. This constitutes the first evidence showing that adenosine enhances sEVs release from eEPC, which has pro-angiogenic capacity on recipient endothelial cells.


Assuntos
Células Progenitoras Endoteliais , Humanos , Células Progenitoras Endoteliais/metabolismo , Adenosina/farmacologia , Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida)/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco/metabolismo , Meios de Cultivo Condicionados/metabolismo
7.
Reprod Biol ; 23(1): 100725, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36565511

RESUMO

Pre-implantation embryos release extracellular vesicles (EVs) to extracellular environment. In this work it is hypothesized that the EVs miRNA cargo will vary during pre-implantation development due to the constant changes in gene expression that take place through this period. The concentration, size and miRNA cargo of EVs secreted by competent bovine embryos during the period from compaction to blastulation (Day 3-7) were analyzed. For this analysis tow developmental windows were defined: W2 from 8-cells (D3) to morula (D5) and W3 from morula (D5) to blastocyst (D7). For W2, in vitro produced embryos were individually cultured in EVs-depleted medium from D3 to D5; culture media were collected and assigned to Group W2. Morulae were kept in culture up to blastocyst stage to determine the developmental competence. For W3, D5 morulae were collected and cultured individually in EVs-depleted medium up to blastocyst stage; culture media were assigned to Group W3, and blastocysts were kept in culture up to day 11 to define their competence. The mean size of EVs was similar between groups, however, EVs concentration was lower in W2. A total of 140 miRNAs were identified. From them, 79 were differentially expressed between the groups, 28 upregulated and 51 downregulated. miRNAs differentially detected between both developmental windows participate in the regulation of signaling pathways which crucial for embryonic development. It was concluded that the secretion of EVs is regulated by the developmental progress of the embryo during the pre-implantation period.


Assuntos
Vesículas Extracelulares , MicroRNAs , Gravidez , Feminino , Animais , Bovinos , MicroRNAs/metabolismo , Técnicas de Cultura Embrionária , Implantação do Embrião , Blastocisto/fisiologia , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Meios de Cultura
8.
Zygote ; 30(6): 841-848, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36043362

RESUMO

Domestic cat embryos generated by in vitro fertilization (IVF) and cultured without the zona pellucida have a reduced implantation capacity after embryo transfer at the blastocyst stage. The objective of this study was to evaluate the expression of trophectoderm markers in domestic cat blastocysts cultured without the zona pellucida. Two experimental groups were selected: (1) domestic cat embryos generated by IVF and cultured in vitro normally (zona intact group, ZI); and (2) domestic cat embryos generated by IVF and cultured in vitro without a zona pellucida (zona-free group, ZF). In the ZF group, the zona pellucida of the presumptive zygote was removed and these were cultured using the well of the well (WOW) system. In vitro culture was carried out for 7 days. The cleavage, morula and blastocyst rates were estimated. Finally, the relative expression levels of the trophectoderm markers TEAD4, YAP1, CDX2 and EOMES, the cell adhesion marker E-cadherin and the apoptosis marker CASP3 were evaluated by RT-qPCR in the blastocysts. The Wilcoxon test was used to evaluate differences (P < 0.05). No differences were observed in the cleavage, morula and blastocyst rates between the ZF and ZI groups. No differences were found in the expression of TEAD4, CDX2, E-cadherin and CASP3 between groups. The expression of YAP1 and EOMES was higher in ZF blastocysts than in ZI blastocysts. In conclusion, the in vitro culture without the zona pellucida generates an overexpression of YAP1 and EOMES in the domestic cat blastocysts. More studies are needed to confirm if this overexpression might affect in vivo development.


Assuntos
Blastocisto , Zona Pelúcida , Gatos , Animais , Caspase 3 , Fertilização in vitro , Caderinas
9.
Animals (Basel) ; 12(2)2022 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-35049777

RESUMO

Over the last few years, several commercial FSH products have been developed for cattle superovulation (SOV) purposes in Multiple Ovulation and Embryo Transfer (MOET) programs. The SOV response is highly variable among individuals and remains one of the main limiting factors in obtaining a profitable number of transferable embryos. In this study, follicle stimulating hormone (FSH) from different origins was included in two SOV protocols, (a) FSH from purified pig pituitary extract (NIH-FSH-p; two doses/day, 12 h apart, four consecutive days); and (b) extra-long-acting bovine recombinant FSH (bscrFSH; a single dose/day, four consecutive days), to test the effects of bscrFSH on the ovarian response, hormone profile levels, in vivo embryo production and the pluripotency gene expression of the obtained embryos. A total of 68 healthy primiparous red Angus cows (Bos taurus) were randomly distributed into two experimental groups (n = 34 each). Blood sample collection for progesterone (P4) and cortisol (C) level determination was performed together with ultrasonographic assessment for ovarian size, follicles (FL) and corpora lutea (CL) quantification in each SOV protocol (Day 0, 4, 8, and 15). Moreover, FSH profiles were monitorised throughout both protocols (Day 0, 4, 5, 6, 7, 8, 9, 10, and 15). In vivo embryo quantity and quality (total structures, morulae, blastocysts, viable, degenerated and blocked embryos) were recorded in each SOV protocol. Finally, embryo quality in both protocols was assessed by the analysis of the expression level of crucial genes for early embryo development (OCT4, IFNt, CDX2, BCL2, and BAX). P4 and cortisol concentration peaks in both SOV protocols were obtained on Day 15 and Day 8, respectively, which were statistically different compared to the other time-points (p < 0.05). Ovarian dimensions increased from Day 0 to Day 15 irrespective of the SOV protocol considered (p < 0.05). Significant changes in CL number were observed over time till Day 15 irrespective of the SOV protocol applied (p < 0.05), being non- significantly different between SOV protocols within each time-point (p > 0.05). The number of CL was higher on Day 15 in the bscrFSH group compared to the NIH-FSH-p group (p < 0.05). The number of embryonic structures recovered was higher in the bscrFSH group (p = 0.025), probably as a result of a tendency towards a greater number of follicles developed compared to the NIH-FSH-p group. IFNt and BAX were overexpressed in embryos from the bscrFSH group (p < 0.05), with a fold change of 16 and 1.3, respectively. However, no statistical differences were detected regarding the OCT4, CDX2, BCL2, and BCL2/BAX expression ratio (p > 0.05). In conclusion, including bscrFSH in SOV protocols could be an important alternative by reducing the number of applications and offering an improved ovarian response together with better embryo quality and superior performance in embryo production compared to NIH-FSH-p SOV protocols.

10.
Cell Reprogram ; 23(5): 277-289, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34648384

RESUMO

Somatic cell nuclear transfer (SCNT) is a method with unique ability to reprogram the epigenome of a fully differentiated cell. However, its efficiency remains extremely low. In this work, we assessed and combined two simple strategies to improve the SCNT efficiency in the bovine. These are the use of less-differentiated donor cells to facilitate nuclear reprogramming and the embryo aggregation (EA) strategy that is thought to compensate for aberrant epigenome reprogramming. We carefully assessed the optimal time of EA by using in vitro-fertilized (IVF) embryos and evaluated whether the use of adipose-derived mesenchymal stem cells (ASCs) as donor for SCNT together with EA improves the blastocyst rates and quality. Based on our results, we determined that the EA improves the preimplantation embryo development per well of IVF and SCNT embryos. We also demonstrated that day 0 (D0) is the optimal aggregation time that leads to a single blastocyst with uniform distribution of the original blastomeres. This was confirmed in bovine IVF embryos and then, the optimal condition was translated to SCNT embryos. Notably, the relative expression of the trophectoderm (TE) marker KRT18 was significantly different between aggregated and nonaggregated ASC-derived embryos. In the bovine, no effect of the donor cell is observed on the developmental rate, or the embryo quality. Therefore, no synergistic effect of the use of both strategies is observed. Our results suggest that EA at D0 is a simple and accessible strategy that improves the blastocyst rate per well in bovine SCNT and IVF embryos and influence the expression of a TE-related marker. The aggregation of two ASC-derived embryos seems to positively affect the embryo quality, which may improve the postimplantation development.


Assuntos
Blastocisto/citologia , Clonagem de Organismos/veterinária , Técnicas de Cultura Embrionária/métodos , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Células-Tronco Mesenquimais/citologia , Animais , Bovinos , Embrião de Mamíferos/química , Feminino , Fertilização in vitro , Gravidez
11.
Theriogenology ; 174: 36-46, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416562

RESUMO

The removal of the zona pellucida has been used to improve the in vitro development of domestic cat embryos generated by IVF and SCNT. However, the in vivo development of domestic cat embryos generated without the zona pellucida has not been evaluated. The objective of this study was to evaluate the effects of zona pellucida removal on the in vitro and in vivo development of domestic cat embryos generated by IVF. For this purpose, two experimental groups were created: 1) domestic cat embryos cultured in vitro (Zona-intact group, ZI) and 2) domestic cat embryos cultured in vitro without the zona pellucida (Zona-free group, ZF). Domestic cat embryos were generated by IVF and cultured in vitro for 8 days. In the ZF group, the zona pellucida was removed after IVF, and embryos were cultured using the well of the well system (WOW). Cleavage, morula and blastocyst rates were evaluated in both groups. The diameter and total cell number of blastocysts were assessed. Relative expression of pluripotency (OCT4, SOX2 and NANOG), differentiation (CDX2 and GATA6) and apoptotic markers (BAX and BCL2) was evaluated in blastocysts. Finally, to evaluate in vivo development, embryos at days 5, 6 and 7 of development were transferred into recipient domestic cats, and ultrasonography was performed to evaluate implantation. No differences were observed in the cleavage, morula or blastocyst rates between embryos from the ZI and ZF groups. The diameter (mean ± SD) of blastocysts from the ZF group was greater (253.4 ± 83.3 µm) than that from the ZI group (210.5 ± 78.5 µm). No differences were observed in the relative expression of OCT4, CDX2 or GATA6. However, the relative expression of SOX2 and NANOG was significantly reduced in ZF blastocysts compared to ZI blastocysts. Furthermore, the relative expression of BAX was higher in ZF blastocysts than in ZI blastocysts. Finally, four pregnancies were confirmed after the transfer of ZI embryos (n = 110). However, no pregnancies were observed after the transfer of ZF embryos at the morula or blastocyst stage (n = 56). In conclusion, domestic cat embryos cultured without the zona pellucida were able to develop in vitro until the blastocyst stage. However, the removal of the zona pellucida negatively affected the gene expression of pluripotency and apoptosis markers, and ZF embryos were unable to implant. This might indicate that the removal of the zona pellucida is detrimental for the implantation and in vivo development of domestic cat embryos.


Assuntos
Blastocisto , Zona Pelúcida , Animais , Gatos , Implantação do Embrião , Feminino , Fertilização in vitro/veterinária , Expressão Gênica , Mórula , Gravidez
12.
Anim Reprod ; 18(1): e20200028, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-34122648

RESUMO

Extracellular vesicles are nanoparticles secreted by cell and have been proposed as suitable markers to identify competent embryos produced in vitro. Characterizing EVs secreted by individual embryos is challenging because culture medium itself contributes to the pool of nanoparticles that are co-isolated. To avoid this, culture medium must be depleted of nanoparticles that are present in natural protein source. The aim of this study was to evaluate if the culture medium subjected to nanoparticle depletion can support the proper in vitro development of bovine embryos. Zygotes were cultured in groups on depleted or control medium for 8 days. Nanoparticles from the medium were characterized by their morphology, size and expression of EVs surface markers. Isolated nanoparticles were labelled and added to depleted medium containing embryos at different developmental stages and evaluated after 24 hours at 2, 8-16 cells, morula and blastocyst stages. There were no statistical differences on blastocyst rate at day 7 and 8, total cell count neither blastocyst diameter between groups. However, morphological quality was better in blastocysts cultured in non-depleted medium and the expression of SOX2 was significantly lower whereas NANOG expression was significantly higher. Few nanoparticles from medium had a typical morphology of EVs but were positive to specific surface markers. Punctuated green fluorescence near the nuclei of embryonic cells was observed in embryos from all developmental stages. In summary, nanoparticles from culture medium are internalized by in vitro cultured bovine embryos and their depletion affects the capacity of medium to support the proper embryo development.

13.
Zygote ; 29(2): 138-149, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33118919

RESUMO

Human embryos generated in vitro have a high incidence of chromosomal abnormalities that negatively affect pregnancy rate. Embryos generated in vitro secrete extracellular vesicles (EVs) into the culture medium that could be used potentially as indicators of embryo competence. This research aimed to evaluate the concentration and size of EVs and their gDNA content as an indicator of developmental competence in human embryos. Human embryos generated by intracytoplasmic sperm injection (ICSI) were classified morphologically as of either TOP, FAIR or POOR quality. Culture medium and developmentally arrested embryos (which were not able to be used for embryo transfer) were collected. Microvesicles, exosomes (MV/Exo) and apoptotic bodies (ABs) were isolated from culture medium. Nanoparticle tracking analysis (NTA) and array comparative genomic hybridization (aCGH) analysis were performed to evaluate EVs and their gDNA content. From NTA, the diameter (mean) of MVs/Exo from TOP quality embryos was higher (112.17 nm) compared with that of FAIR (108.02) and POOR quality embryos (102.78 nm) (P < 0.05). aCGH analysis indicated that MVs/Exo and ABs carried gDNA with the presence of 23 chromosome pairs. However, when arrested embryos were compared with their respective MVs/Exo and ABs, the latter had an increased rate of chromosomal abnormalities (24.9%) compared with embryos (8.7%) (P < 0.05). In conclusion, the size of EVs from culture medium might be an alternative for evaluating competence of human embryos, however more studies are needed to validate the use of gDNA from EVs as an indicator of embryo competence.


Assuntos
Técnicas de Cultura Embrionária , Vesículas Extracelulares , Blastocisto , Hibridização Genômica Comparativa , Embrião de Mamíferos , Humanos
14.
Int J Mol Sci ; 21(23)2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33255183

RESUMO

During early development, embryos secrete extracellular vesicles (EVs) that participate in embryo-maternal communication. Among other molecules, EVs carry microRNAs (miRNAs) that interfere with gene expression in target cells; miRNAs participate in embryo-maternal communication. Embryo selection based on secreted miRNAs may have an impact on bovine breeding programs. This research aimed to evaluate the size, concentration, and miRNA content of EVs secreted by bovine embryos with different developmental potential, during the compaction period (days 3.5-5). Individual culture media from in vitro-produced embryos were collected at day 5, while embryos were further cultured and classified at day 7, as G1 (conditioned-culture media by embryos arrested in the 8-16-cells stage) and G2 (conditioned-culture media by embryos that reached blastocyst stages at day 7). Collected nanoparticles from embryo conditioned culture media were cataloged as EVs by their morphology and the presence of classical molecular markers. Size and concentration of EVs from G1 were higher than EVs secreted by G2. We identified 95 miRNAs; bta-miR-103, bta-miR-502a, bta-miR-100, and bta-miR-1 were upregulated in G1, whereas bta-miR-92a, bta-miR-140, bta-miR-2285a, and bta-miR-222 were downregulated. The most significant upregulated pathways were fatty acid biosynthesis and metabolism, lysine degradation, gap junction, and signaling pathways regulating pluripotency of stem cells. The characteristics of EVs secreted by bovine embryos during the compaction period vary according to embryo competence. Embryos that reach the blastocyst stage secrete fewer and smaller vesicles. Furthermore, the loading of specific miRNAs into the EVs depends on embryo developmental competence.


Assuntos
Biomarcadores/metabolismo , Desenvolvimento Embrionário/genética , Vesículas Extracelulares/genética , MicroRNAs/genética , Animais , Blastocisto/metabolismo , Bovinos , Meios de Cultivo Condicionados/farmacologia , Técnicas de Cultura Embrionária , Embrião de Mamíferos , Feminino
15.
Cell Reprogram ; 22(6): 311-327, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32991224

RESUMO

Equine endometrial and adipose mesenchymal stem cells (eMSCs and aMSCs, respectively) were isolated from the same donors of thoroughbred mares. The cells displayed characteristic features of MSCs, including trilineage mesodermal and also neurogenic differentiation. We evaluated the influence of cellular origin on their transcriptome profile. Cellular RNA was isolated and sequenced and extracellular vesicles (EVs) were obtained from conditioned medium of cells cultured in medium depleted of EVs, and their microRNA (miRNA) cargo analyzed by sequencing. Differential expression of mRNAs and EV-miRNA was analyzed, as well as pathways and processes most represented in each cell origin. mRNA reads from all expressed genes clustered according to the cellular origin. A total of 125 up- and 51 downregulated genes were identified and 31 differentially expressed miRNAs. Based on mRNA sequencing, endometrial MSCs strongly upregulated genes involved in the Hippo, transforming growth factor beta, and pluripotency signaling pathways. Alongside with this, pathways involved in extracellular matrix reorganization were the most represented in the miRNA cargo of EVs secreted by eMSCs. The niche from which MSCs originated defined the transcriptomic signature of the cells, including the secretion of lineage-specific loaded EV to ensure proper communication and homeostasis. Identification and testing their biological functions can provide new tools for the therapeutic use of horse MSC.


Assuntos
Tecido Adiposo/citologia , Diferenciação Celular , Endométrio/citologia , Vesículas Extracelulares/metabolismo , Células-Tronco Mesenquimais/citologia , MicroRNAs/genética , Transcriptoma , Tecido Adiposo/metabolismo , Animais , Células Cultivadas , Endométrio/metabolismo , Vesículas Extracelulares/genética , Feminino , Cavalos , Células-Tronco Mesenquimais/metabolismo , Transdução de Sinais
16.
Animals (Basel) ; 10(9)2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32967074

RESUMO

The main objective of this study was to analyze the effects of the inbreeding degree in high-producing primiparous dairy cows genotypically and phenotypically evaluated and its impacts on production and reproductive parameters. Eighty Holstein-Friesian primiparous cows (age: ~26 months; ~450 kg body weight) were previously genomically analyzed to determine the Inbreeding Index (II) and were divided into two groups: low inbreeding group (LI: <2.5; n = 40) and high inbreeding group (HI: ≥2.5 and ≤5.0; n = 40). Genomic determinations of production and reproductive parameters (14 in total), together with analyses of production (12) and reproductive (11) phenotypic parameters (23 in total) were carried out. Statistically significant differences were obtained between groups concerning the genomic parameters of Milk Production at 305 d and Protein Production at 305 d and the reproductive parameter Daughter Calving Ease, the first two being higher in cows of the HI group and the third lower in the LI group (p < 0.05). For the production phenotypic parameters, statistically significant differences were observed between both groups in the Total Fat, Total Protein, and Urea parameters, the first two being higher in the LI group (p < 0.05). Also, significant differences were observed in several reproductive phenotypic parameters, such as Number of Services per Conception, Calving to Conception Interval, Days Open Post Service, and Current Inter-Partum Period, all of which negatively influenced the HI group (p < 0.05). In addition, correlation analyses were performed between production and reproductive genomic parameters separately and in each consanguinity group. The results showed multiple positive and negative correlations between the production and reproductive parameters independently of the group analyzed, being these correlations more remarkable for the reproductive parameters in the LI group and the production parameters in the HI group (p < 0.05). In conclusion, the degree of inbreeding significantly influenced the results, affecting different genomic and phenotypic production and reproductive parameters in high-producing primiparous cows. The determination of the II in first-calf heifers is crucial to evaluate the negative effects associated with homozygosity avoiding an increase in inbreeding depression on production and reproductive traits.

17.
Theriogenology ; 158: 148-157, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32961350

RESUMO

The kodkod (Leopardus guigna) is a small felid endemic of Chile and is considered a vulnerable species. Domestic cat oocytes have been successfully used as recipient cytoplast to reprogram somatic cells from different felids by interspecific somatic cell nuclear transfer (iSCNT). The developmental competence of felid embryos generated by iSCNT can be improved by the aggregation method using a zona-free culture system. The objective of this research was to evaluate the developmental competence of kodkod embryos generated by iSCNT using domestic cat oocytes and the aggregation method. For this purpose, five experimental group were done: (1) cat embryos generated by IVF, (2) cat embryos generated by SCNT (Ca1x), (3) aggregated cat embryos generated by SCNT (Ca2x), (4) kodkod embryos generated by iSCNT (K1x) and (5) aggregated kodkod embryos generated by iSCNT (K2x). Cleavage, morulae and blastocyst rates were estimated. The blastocyst diameter was evaluated. The gene expression level of pluripotency (OCT4, SOX2 and NANOG) and differentiation markers (CDX2 and GATA6) was analyzed in blastocysts. Morulae rate was higher in the IVF group and when cloned embryos were cultured in aggregates (IVF: 68.2%, Ca2x: 58.0% and K2x: 62.4%) compared to individually cultured kodkod embryos (K1x: 37.0%) (P < 0.05). Embryo aggregation increased blastocysts formation in the Ca2x group (30.9%) to a similar rate compared to the IVF group (44.5%) (P > 0.05). No blastocysts were generated in the K1x group, whereas blastocysts formation was obtained in K2x group (5.9%). The diameter of blastocysts from the K2x group (172.8 µm) was significantly lower than blastocysts from the Ca2x group (P < 0.05). The relative expression of OCT4 was lower in blastocysts from Ca1x than in blastocysts from IVF (P < 0.05). Furthermore, CDX2 expression was lower in blastocysts from Ca2x than in blastocysts from Ca1x and IVF groups (P < 0.05). In kodkod embryos, only one blastocyst from the K2x group expressed OCT4. No expression of SOX2, NANOG, CDX2 and GATA6 was detected in kodkod blastocysts. In conclusion, after iSCNT, domestic cat oocytes support the development of kodkod embryos until the morula stage. The aggregation method increases the morulae rate of kodkod cloned embryos and allows blastocysts formation. However, kodkod blastocysts have a poor morphological quality and a lacking expression of pluripotency and differentiation markers, probably caused by an incomplete nuclear reprogramming.


Assuntos
Blastocisto , Embrião de Mamíferos , Animais , Gatos , Chile , Clonagem de Organismos/veterinária , Desenvolvimento Embrionário , Técnicas de Transferência Nuclear/veterinária
18.
Theriogenology ; 155: 33-42, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32622203

RESUMO

Horse mesenchymal stem cells (MSC) are potential anti-inflammatory tools for post-breeding induced endometritis (PBIE). In this research MSCs isolated from the endometrium or subcutaneous fat of the same donors were infused iu into mares with PBIE for assessment of their anti-inflammatory action and engraftment. PBIE was induced in nine gynecologically healthy mares by iu infusion of 500 million dead sperm in saline. Inflammatory markers were analyzed in uterine lavages and biopsies immediately before (phase I) and 3 h after infusion of sperm (phase II). Measurements: polymorph nuclear cells (PMN), proteins IL-6 and TNFα (ELISA in the lavages) and immunostaining in biopsies, transcripts of IL-1α, 6, 8, 10, TNFα and COX2 (qPCR of pelleted lavages). At 24 h after sperm deposition (phase III), mares were instilled iu with 20 ml of saline containing 2 × 107 adipose MSCs (n = 3, group 1) or endometrial MSCs (n = 3, group 2). Cells were labeled previously with carboxyfluorescein diacetate succinimidyl ester (CFDA SE). A third group (n = 3) received 20 mL of sterile saline alone. After 48 h another biopsy/lavage were done and the same parameters analyzed. For engraftment, additional biopsies were taken at days 10 and 30 of sperm infusion and analyzed by confocal microscopy. Dead sperm in saline markedly increased PMNs counts, IL-6 and TNFα expression in the ELISA (p < 0.05) and immunostaining. In phase III a significant reduction (p < 0.0001) of PMN was found in all samples, including control mares. A decrease (p < 0.05) of IL-6 and TNF-α was detected by ELISA, in the groups that received MSC, but not in control group. In the aMSC-treated group, a significant decrease was found in the expression of (IL1α, p = 0.0003; IL-6 p 0.04; IL-8, p = 0.006, TNFα p = 0.004). Expression of IL-10 and COX2 remained unchanged (p = 0.08). In the mares that received eMSC, IL-6 and 8 decreased significantly (p = 0.01), IL-10 increased (p = 0.009), while TNFα, COX2 and IL1α did not significantly change their expression. In the engraftment experiment CFDA label was found sparingly in all the samples analyzed until day 30, mainly at the stromal compartment of the endometrium. No differences in the engraftment pattern was found among cell origins. We conclude that inoculation of MSCs significantly reduced inflammation independently of the origin of the cells and that cells perform limited engraftment detectable after one month of infusion. These findings can be of help for the design of new anti-inflammatory therapies of uterine diseases in mares.


Assuntos
Endometrite , Doenças dos Cavalos , Células-Tronco Mesenquimais , Animais , Anti-Inflamatórios , Endometrite/tratamento farmacológico , Endometrite/veterinária , Endométrio , Feminino , Doenças dos Cavalos/tratamento farmacológico , Cavalos
19.
Anim Reprod ; 17(2): e20190109, 2020 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-32714450

RESUMO

Adipose derived mesenchymal stem cells (AMSCs) have been isolated from domestic and wild cats. For wild cats, the isolation of AMSCs has been reported in the black-footed cats (Felis nigripes) and guigna (Leopardus guigna). Stromal vascular fraction (SVF) isolated from cougar adipose tissue have been used to restore elbow functionality in the cougar (Puma concolor) but multipotent characteristics of these cells have not been described. The present study describes for the first time the isolation and characterization of mesenchymal stem cells derived from adipose tissue of cougar. AMSCs and fibroblasts from six months female cougar were isolated and cultured in DMEM/F12, supplemented with FBS 10% + 1% Antibiotic/Antifungal + 2.4 mM L-Glutamine + 2.4 mM pyruvate up to passage 5. Expression of pluripotent and surface marker genes was evaluated at mRNA level. Mesodermal differentiation (adipogenic, osteogenic and chondrogenic) was described. AMSCs expressed mRNA of pluripotent genes Oct4, Nanog, Sox2 and Klf4 and surface markers Cd44, Cd90, Cd105 and MHCII. Fibroblasts showed similar mRNA expression with the exception of Sox2. AMSCs obtained from cougar exhibit multipotency features similar to domestic cats MSC, nevertheless, other analyses are required. AMSCs from cougar could be a source of interest for treatment of individuals that remain in captivity or arrive to wildlife rehabilitation centers.

20.
Animals (Basel) ; 10(6)2020 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-32585798

RESUMO

In mesenchymal stem cells (MSCs), it has been reported that prostaglandin E2 (PGE2) stimulation of EP2 and EP4 receptors triggers processes such as migration, self-renewal, survival, and proliferation, and their activation is involved in homing. The aim of this work was to establish a genetically modified adipose (aMSC) model in which receptor genes EP2 and EP4 were edited separately using the CRISPR/Cas9 system. After edition, the genes were evaluated as to if the expression of MSC surface markers was affected, as well as the migration capacity in vitro of the generated cells. Adipose MSCs were obtained from Chilean breed horses and cultured in DMEM High Glucose with 10% fetal bovine serum (FBS). sgRNA were cloned into a linearized LentiCRISPRv2GFP vector and transfected into HEK293FT cells for producing viral particles that were used to transduce aMSCs. GFP-expressing cells were separated by sorting to obtain individual clones. Genomic DNA was amplified, and the site-directed mutation frequency was assessed by T7E1, followed by Sanger sequencing. We selected 11 clones of EP2 and 10 clones of EP4, and by Sanger sequencing we confirmed 1 clone knock-out to aMSC/EP2 and one heterozygous mutant clone of aMSC/EP4. Both edited cells had decreased expression of EP2 and EP4 receptors when compared to the wild type, and the edition of EP2 and EP4 did not affect the expression of MSC surface markers, showing the same pattern in filling the scratch. We can conclude that the edition of these receptors in aMSCs does not affect their surface marker phenotype and migration ability when compared to wild-type cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA